Interactive Multiobjective Optimization Using a Set of Additive Value Functions

نویسندگان

  • José Rui Figueira
  • Salvatore Greco
  • Vincent Mousseau
  • Roman Slowinski
چکیده

In this chapter, we present a new interactive procedure for multiobjective optimization, which is based on the use of a set of value functions as a preference model built by an ordinal regression method. The procedure is composed of two alternating stages. In the first stage, a representative sample of solutions from the Pareto optimal set (or from its approximation) is generated. In the second stage, the Decision Maker (DM) is asked to make pairwise comparisons of some solutions from the generated sample. Besides pairwise comparisons, the DM may compare selected pairs from the viewpoint of the intensity of preference, both comprehensively and with respect to a single criterion. This preference information is used to build a preference model composed of all general additive value functions compatible with the obtained information. The set of compatible value functions is then applied on the whole Pareto optimal set, which results in possible and necessary rankings of Pareto optimal solutions. These rankings are used to select a new sample of solutions, which is presented to the DM, and the procedure cycles until a satisfactory solution is selected from the sample or the DM comes to conclusion that there is no satisfactory solution for the current problem setting. Construction of the set of compatible value functions is done using ordinal regression methods called UTAGMS and GRIP. These two methods generalize UTA-like methods and they are competitive to AHP and MACBETH methods. The interactive procedure will be illustrated through an example. Reviewed by: Jerzy Błaszczyński, Poznań University of Technology, Poland Daisuke Sasaki, University of Cambridge, UK Kalyanmoy Deb, Indian Institute of Technology Kanpur, India J. Branke et al. (Eds.): Multiobjective Optimization, LNCS 5252, pp. 97–119, 2008. c © Springer-Verlag Berlin Heidelberg 2008 98 J.R. Figueira et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive evolutionary multiobjective optimization driven by robust ordinal regression

This paper presents the Necessary-preference-enhanced Evolutionary Multiobjective Optimizer (NEMO), which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure. In the course of NEMO, the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population. The whole set of additive val...

متن کامل

Interactive Multi-Objective Optimization (MOO) using a Set of Additive Value Functions

In this paper we present a new interactive procedure for multiObjective optimization, which is based on the use of a set of value functions as a preference model built by an ordinal regression method. The procedure is composed of two alternating stages. In the first stage, a representative sample of solutions from the Pareto optimal set (or from its approximation) is generated. In the second st...

متن کامل

A fuzzy multi-objective model for a project management problem

In this research, the multi-objective project management decision problem with fuzzy goals and fuzzy constraints are considered. We constitute α-cut approach and two various fuzzy goal programming solution methods for solving the Multi-Objective Project Management (MOPM) decision problem under fuzzy environments. The Interactive fuzzy multi-objective linear programming (i-FMOLP) and Weighted Ad...

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

Xergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system

Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008